# Fluorescence and Energy-Transfer Characteristics of Rare Earth lons in BaYF<sub>5</sub> Crystals

LIU XINGREN,\* XU GANG, AND RICHARD C. POWELL

Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078

Received June 12, 1985; in revised form September 9, 1985

Fluorescence spectra, excitation spectra, and fluorescence lifetimes are reported for a series of BaYF<sub>5</sub> crystals doped with  $Eu^{2+}$ ,  $Er^{3+}$ , or Ho<sup>3+</sup>, or codoped with  $Eu^{2+}$  and either  $Er^{3+}$  or Ho<sup>3+</sup> ions. These data were obtained as a function of concentration of active ions and temperature. The rate and efficiency of energy transfer between pairs of ions is obtained and the mechanism for energy transfer is found to be electric dipole-dipole interaction. In addition, multiphonon radiationless decay rates are determined for  $Er^{3+}$  in this host. @ 1986 Academic Press, Inc.

#### Introduction

Doped fluoride crystals of the type  $BaLnF_5$  and  $BaLn_2F_8$  ( $Ln = La, \cdots Lu$ , and Y) are an important class of materials for laser, phosphor, and upconversion applications (1-5). These host crystals can be simultaneously doped with divalent and trivalent rare earth ions. The former have strong, broad absorption bands ideal for optical pumping while the latter have sharp emission lines with much longer lifetimes ideal for generating stimulated emission. To make optimum use of these properties in designing materials for specific applications, it is important to characterize the process of energy transfer taking place between these two types of ions. This paper describes the fluorescence properties of  $BaYF_5: Eu^{2+}$ ,  $BaYF_5: Eu^{2+}, Er^{3+},$ and  $BaYF_5Eu^{2+},Ho^{3+}$  and presents the characteristics of energy transfer between  $Eu^{2+}$ and the trivalent rare earth ions in the latter two crystals.

The samples were prepared by solid state reaction of a stoichiometric mixture of fluorides in a pure nitrogen flow or  $N_2/H_2$  mixture. The stoichiometric mixtures were loaded in graphite capsules and fired for about 20 hr at 1000°C. The BaYF<sub>5</sub> samples were checked by X-ray diffraction and found to be cubic with a unit cell dimension of 5.9 Å.

The samples were mounted in a cryogenic refrigerator capable of controlling the temperature between 10 and 300 K. For fluorescence spectra and lifetime measurements, excitation was provided by a nitrogen laser pulse 10 ns in duration and 1.0 Å in half width centered at 337.1 nm. The emission was focused onto the entrance slit of a 1-m Spex monochromator set for a resolution of 1 Å. The signal was detected by a cooled RCA C31034 photomultiplier tube and analyzed by an EGG/PAR boxcar inte-

<sup>\*</sup> On leave from Changchun Institute of Physics, Chinese Academy of Science, Changchun, China.



FIG. 1. Fluorescence spectra of  $Eu^{2+}$  in BaYF<sub>5</sub> at 4  $\mu$ s after a nitrogen laser excitation pulse.

grator before being displayed on a stripchart recorder. The boxcar window was either set to give time-resolved spectra or scanned to determine lifetimes. Excitation spectra were obtained with xenon lamp excitation.

### **Experimental Results**

## Spectra of BaYF<sub>5</sub>: Eu<sup>2+</sup>

The excitation spectra of the three  $Eu^{2+}$ doped samples consist of two broad bands

at approximately 260 and 332 nm which are similar to Eu<sup>2+</sup> absorption bands reported in other host crystals. The nitrogen laser excitation efficiently pumps the low-energy absorption band. Figure 1 shows the fluorescence spectra of  $Eu^{2+}$  in BaYF<sub>5</sub> at 4  $\mu$ s after the excitation pulse for three doping concentrations at both high and low temperatures. Each spectrum consists of a broad band in the near UV spectral region as is common for Eu<sup>2+</sup> in other strong crystal field hosts. This is due to the allowed transition from the lowest level of the  $4f^{65}d^{1}$  configuration to the ground state of the  $4f^7$  configuration. The emission bands shown in Fig. 1 are broadened and shifted to lower energy as temperature is increased and as concentration of  $Eu^{2+}$  is increased.

The fluorescence decays for these samples were observed to be single exponentials with lifetimes less than a microsecond. These are listed in Table I. They were found to be independent of temperature and are typical magnitudes for parity- and spinallowed transitions.

#### Spectra of $BaYF_5$ : $Eu^{2+}$ , $Er^{3+}$

The room-temperature fluorescence spectrum of  $BaYF_5: Eu^{2+}, Er^{3+}$  after pulsed nitrogen laser excitation is shown in Fig. 2. The spectrum consists of two features: the first is the broad  $Eu^{2+}$  band similar to that

| Sample<br>(mole %) |     | <i>τ</i> (μs) |     | t (us) |       |                      |                   |
|--------------------|-----|---------------|-----|--------|-------|----------------------|-------------------|
| Eu                 | Er  | Eu            | Er  | Er     | η     | $\omega(\mu s^{-1})$ | $R_0(\text{\AA})$ |
| 0.5                | 0.0 | 0.71          |     |        |       |                      |                   |
| 1.0                | 0.0 | 0.50          |     |        |       |                      |                   |
| 5.0                | 0.0 | 0.21          |     |        |       |                      |                   |
| 0.5                | 0.5 | 0.55          |     |        | 0.225 | 0.41                 | 9.0               |
| 0.5                | 1.0 | 0.50          |     |        | 0.296 | 0.59                 | 7.6               |
| 0.5                | 3.0 | 0.34          | 370 | 54     | 0.521 | 1.53                 | 7.7               |
| 0.5                | 5.0 | 0.24          |     |        | 0.662 | 2.56                 | 6.8               |

TABLE I

Eu<sup>2+</sup>-Er<sup>3+</sup> Decay Time and Energy Transfer Parameters (300 K)



FIG. 2. Fluorescence spectrum of  $BaYF_5$ :  $Eu^{2+}$ ,  $Er^{3+}$  at room temperature.

seen in Fig. 1; the second is the series of sharp lines associated with the 4f-4f transitions of the Er<sup>3+</sup> ions. The set of lines in the 540- to 560-nm spectral region corresponds to transitions between levels of the  ${}^{4}S_{3/2}$ - ${}^{4}I_{15/2}$  manifolds; those in the 522- to 535-nm region correspond to <sup>2</sup>H<sub>11/2</sub>-<sup>4</sup>I<sub>15/2</sub> transitions; and the blue emission lines are associated with the  ${}^{2}H_{9/2}-{}^{4}I_{15/2}$  transitions. The latter are weak but grow with increasing Er<sup>3+</sup> concentration. The red emission of  $Er^{3+}$  associated with the  ${}^{4}F_{9/2}$   ${}^{-4}I_{15/2}$  transitions which is seen in other hosts is not observed in BaYF<sub>5</sub> at either high or low temperature under UV excitation. This may be due to reduced multiphonon relaxa-



FIG. 3. Room-temperature excitation spectra of  $Er^{3+}$ emission of two samples at 540 nm with 0.5 mole%  $Er^{3+}$ . One sample contained no  $Eu^{2+}$  (broken line) and the other contained 0.5 mole%  $Eu^{2+}$ .



FIG. 4. Relative intensity of the Eu<sup>2+</sup> emission at 380 nm and the Er<sup>3+</sup> emission at 540 nm for samples of BaYF<sub>5</sub> containing 0.5 mole% Eu<sup>2+</sup> as a function of X mole% Er<sup>3+</sup> at room temperature.

tion rates in this host as discussed below. Infrared emission was not investigated.

Figure 3 compares the room-temperature excitation spectra of  $Er^{3+}$  in BaYF<sub>5</sub> samples with and without  $Eu^{2+}$ . Several sets of sharp lines belonging to  $Er^{3+}$  absorption transitions are observed in both spectra while the broad  $Eu^{2+}$  absorption band appears only in the  $Eu^{2+}$ -doped sample. These results show that efficient energy transfer occurs from  $Eu^{2+}$  to  $Er^{3+}$  ions in BaYF<sub>5</sub>.

Figure 4 shows the fluorescence intensities of the Eu<sup>2+</sup> emission at 381 nm and the Er<sup>3+</sup> emission at 540 nm plotted as a function of the Er<sup>3+</sup> concentration in BaYF<sub>5</sub> at room temperature. The Eu<sup>+</sup> concentration is fixed at 0.5 mole% in these samples. The intensity of Er<sup>3+</sup> emission increases while that of Eu<sup>2+</sup> decreases with increasing Er<sup>3+</sup> concentration up to about 3 mole%. This can be attributed to increased energy transfer efficiency as the average separation between Eu<sup>2+</sup> and Er<sup>3+</sup> ions decreases. At higher concentrations, the Er<sup>3+</sup> emission intensity also decreases due to interactions between neighboring Er<sup>3+</sup> ions.



FIG. 5. Temperature dependence of the fluorescence lifetimes (circles) and rise times (squares) of  $Er^{3+} 4S_{3/2}$  emission in BaYF<sub>5</sub>:  $Eu^{2+}$ ,  $Er^{3+}$  containing 0.5 mole%  $Eu^{2+}$  and 3.0 mole%  $Er^{3+}$ .

The fluorescence decay patterns of Er<sup>3+</sup> after nitrogen laser excitation exhibit an initial rise and then an exponential decay. The temperature dependences of the rise and decay times are shown in Fig. 5 and the measured values are listed in Table I. Above about 100 K, the rise and decay times decrease similarly with increasing temperature. As temperature is lowered below 100 K the rise time continues to increase while the lifetime tends toward a constant value. The temperature dependence of the fluorescence lifetime is associated with the change in the rate of the multiphonon radiationless relaxation process from the  ${}^{4}S_{3/2}$  level to the  ${}^{4}I_{9/2}$  level. This is described by (6-10)

with

$$W_{\rm nr} = W(0)[e^{\hbar\omega/kT}/(e^{\hbar\omega/kT} - 1)]^p \quad (2)$$

where

1

$$W(0) = C e^{-\alpha \Delta E}.$$
 (3)

(1)

Here  $W_{\rm f}$ ,  $W_{\rm r}$ , and  $W_{\rm nr}$  are the fluorescence, radiative, and nonradiative decay rates, re-

 $W_{\rm f} = W_{\rm r} + W_{\rm nr}$ 

spectively. The latter is treated as the emission of p phonons of energy  $\hbar\omega$  needed to cross an energy gap  $\Delta E = p\hbar\omega$ . W(0) is the zero temperature rate for the multiphonon process and C and  $\alpha$  are parameters associated with the specific host material. For the case of interest here, the energy gap is approximately 3030 cm<sup>-1</sup>. The value for the maximum phonon energy in BaYF<sub>2</sub> has not been measured but should be of the order of 350 cm<sup>-1</sup> as found for other fluoride crystals. This assumption leads to a p = 9phonon process. Using these values in Eqs. (1) and (2), a good fit to the observed temperature dependence of the fluorescence lifetime can be obtained for values of  $W_r =$  $1.44 \times 10^3 \text{ sec}^{-1}$  and  $W_{\text{nr}} = 0.17 \times 10^3 \text{ sec}^{-1}$ . For other fluoride crystals the value of  $\alpha$ has been determined to be close to  $4 \times 10^{-3}$ cm (6). Using this value in Eq. (3) gives a value for C of  $3.1 \times 10^7$  sec<sup>-1</sup>. This is consistent with the results of Johnson and Guggenheim on  $BaY_2F_8$  crystals (10). The fact that  $W_r$  is an order of magnetude larger than  $W_{\rm nr}$  at low temperatures is consistent with the fact that no fluorescence is observed from the  ${}^{4}I_{9/2}$  level.

There can be two possible origins for the observed rise times in the fluorescence emission patterns. The first is the process of energy transfer from  $Eu^{2+}$  to  $Er^{3+}$  and the second is the process of radiationless relaxation from the higher energy levels of  $Er^{3+}$  down to the  ${}^{4}S_{3/2}$  metastable state. The dominant contribution to the observed rise time is due to the process having the smallest transition rate. In both cases the expression for the rise time  $t_{r}$  is

$$t_{\rm r} = (W_2 - W_{\rm f})^{-1} \ln(W_2/W_{\rm f})$$
 (4)

where  $W_2$  is either the energy transfer rate for the radiationless relaxation rate. The value for the energy transfer rate can be found from the quenching of the Eu<sup>2+</sup> fluorescence lifetime as discussed below. If the value found in this way is substituted into Eq. (4) for  $W_2$ , the predicted value for  $t_r$  is



FIG. 6. Fluorescence spectra of  $Eu^{2+}$  in  $BaYF_5$ :  $Eu^{2+}, Er^{3+}$  containing 0.5 mole%  $Eu^{2+}$  and various concentrations of  $Er^{3+}$  at room temperature.

much smaller than the observed value. Thus the rise time is associated with a bottleneck in the multiphonon decay from the excited states in Er<sup>3+</sup> after energy transfer has occurred. Using the measured values of the fluorescence decay times and the risetimes in Eq. (4), values for the nonradiative decay rate can be determined. Extrapolating this to low temperatures gives W'(0) = $1.6 \times 10^3$  sec<sup>-1</sup>. Although this represents the combined results of several different multiphonon decay processes across different size energy gaps, the dominant contribution will come from the process with the largest energy gap. For relaxation after pumping through energy transfer from  $Eu^{2+}$ , the largest gap will be between the  $^{2}H_{9/2}$  and  $^{4}F_{3/2}$  levels which is approximately  $\Delta E = 2500 \text{ cm}^{-1}$ . Using this in Eq. (3) along with the values of C and  $\alpha$  found from analyzing the temperature dependence of the fluorescence decay time gives a predicted value for W'(0) of  $1.4 \times 10^3$  sec<sup>-1</sup>. This is almost exactly the value determined from the rise-time data and is significantly smaller than the energy-transfer rate. Thus the observed risetime is definitely associated with slow nonradiative relaxation processes and the assumptions made in analyzing the temperature dependence of the fluorescence decay time appear to be valid.

Figures 1 and 3 show that there is excellent overlap between the  $Eu^{2+}$  emission band and the  ${}^{4}I_{15/2}-{}^{4}G_{11/2}$  absorption transitions of  $Er^{3+}$ . This can produce both radiative and radiationless energy transfer. Evidence for the radiative-transfer mechanism is provided by the reabsorption dips in the  $Eu^{2+}$  emission band corresponding to the  ${}^{4}I_{15/2}-{}^{4}G_{4/2}$  absorption transitions of  $Er^{3+}$  as shown in Fig. 6. The area of the reabsorption dips increases with  $Er^{3+}$  concentration.

Evidence for radiationless energy transfer is provided by the change in the decay pattern of the  $Eu^{2+}$  fluorescence with increasing  $Er^{3+}$  concentration as shown in Fig. 7. The  $Eu^{2+}$  becomes nonexponential at high  $Er^{3+}$  concentrations and the lifetime becomes much shorter. The measured val-



FIG. 7. Change in the Eu<sup>2+</sup> decay patterns as a function of  $Er^{3+}$  concentration at room temperature in BaYF<sub>5</sub>: Eu<sup>2+</sup>,  $Er^{3+}$  crystals containing 0.5 mole% Eu<sup>2+</sup> and  $Er^{3+}$  concentrations of (1) 0.0 mole%; (2) 0.5 mole%; (3) 1.0 mole%; (4) 3.0 mole%; and (5) 5.0 mole%. (See text for explanation of theoretical lines.)



FIG. 8. Variation of  $Eu^{2+}-Er^{3+}$  energy-transfer rate with the square of the total concentration of doping ions at room temperature. The  $Eu^{2+}$  concentration was fixed at 0.5 mole% and the  $Er^{3+}$  concentrations were 0.5, 1.0, 3.0, and 5.0 mole%.

ues of the lifetimes are listed in Table I. The efficiencies  $(\eta)$  and rates  $(\omega)$  of radiationless energy transfer were calculated from the lifetime data using the expressions

$$\omega = \tau^{-1} - \tau_0^{-1} \tag{5}$$

$$\eta = \omega/\tau^{-1} \tag{6}$$

where  $\tau_0$  is the intrinsic lifetime of the sensitizer in the presence of the acceptor. The lifetime of the sensitizer in the presence of the acceptor. The values obtained for  $\omega$  and  $\eta$ are listed in Table I.

The mechanism for radiationless energy transfer between  $Eu^{2+}$  and  $Er^{3+}$  can be determined using the theory developed by Forster (11) and extended by Dexter (12) and Inokuti and Hirayama (13). In this theory the decay profile of the sensitizer after pulsed excitation is given by

$$I(t) = I(0) \exp[-t/\tau_{so} - \Gamma(1 - 3/s)(C_a/C_0)(t/\tau_{so})^{3/s}]$$
(7)

where  $\tau_{so}$  is the intrinsic lifetime of the sensitizer emission,  $C_a$  is the activator concentration,  $C_0$  is the critical energy-transfer concentration, and s is a number indexing the different types of electric multipolemultipole interaction. This can be used to analyze the sensitizer decay patterns in Fig. 7. The best fits to the data found using Eq. (7) are shown as solid lines. For the four double-doped samples the best theoretical fits were found using a value of s = 6 which implies dipole-dipole interaction. The critical energy transfer concentration was treated as an adjustible parameter and fitting the data yields an average value of  $R_0$ =  $[(4/3)\pi C_0]^{1/3} = 7.6$  Å. This critical transfer distance is related to the transfer rate by

$$\omega = \tau_{\rm so} (R_0/R_{\rm sa})^6 \tag{8}$$

where  $R_{\rm sa}$  is the separation between sensitizer and activator ions. Using the values of  $\omega$  listed in Table I obtained from lifetime quenching measurements and the value of  $R_0$  obtained above, Eq. (8) gives an average sensitizer-activator separation ranging from 9.3 to 7.4 Å for these samples.

The values obtained for  $R_0$  and  $\omega$  are physically reasonable for energy transfer between a divalent and trivalent rare earth ion but it is not possible to obtain an accurate theoretical prediction for these values because a quantitative absorption spectrum cannot be obtained on the small crystallite samples presently available. An additional check on the interpretation of the energy



FIG. 9. Room-temperature fluorescence spectra of BaYF<sub>5</sub>: Eu<sup>2+</sup>(1.0 mole%),Ho<sup>3+</sup>(3.0 mole%) after 337.1-nm excitation.

transfer mechanism as electric dipole-dipole interaction is obtained by plotting the transfer rate versus the square of the total concentration of doping ions as shown in Fig. 8. The fact that  $\omega$  varies linearly with the square of the concentration is consistent with the square of the concentration is consistent with the predictions of dipoledipole interaction (14).

#### Spectra of $BaYF_5$ : $Eu^{2+}$ , $Ho^{3+}$

The room-temperature fluorescence spectra of BaYF<sub>5</sub>: Eu<sup>2+</sup>, Ho<sup>3+</sup> after pulsed laser excitation at 337.1 nm is shown in Fig. 9. The broad band in the 380 nm spectral region is associated with the d-f transition of Eu<sup>2+</sup>. The major emission from Ho<sup>3+</sup> appears in four spectral regions: 478–497 nm (<sup>5</sup>F<sub>3</sub>–<sup>5</sup>I<sub>8</sub>); 530–560 nm (<sup>5</sup>S<sub>2</sub>–<sup>5</sup>I<sub>8</sub>); 635–663 nm (<sup>5</sup>F<sub>3</sub>–<sup>5</sup>I<sub>7</sub> and <sup>5</sup>F<sub>5</sub>–<sup>5</sup>I<sub>8</sub>); and 746–764 nm (<sup>5</sup>I<sub>4</sub>– <sup>5</sup>I<sub>8</sub>).

The room-temperature excitation spectra of the 541 nm Ho<sup>3+</sup> emission line for BaYF<sub>5</sub> samples with and without Eu<sup>2+</sup> are similar to that of BaYF<sub>5</sub>: Eu<sup>2+</sup>,Er<sup>3+</sup>. The broad band associated with the f-d absorption transition of Eu<sup>2+</sup> appears in the excitation spectrum of Ho<sup>3</sup> which shows the presence of energy transfer from Eu<sup>2+</sup> to Ho<sup>3+</sup>.

Figure 10 shows the change in the relative intensities of the  $Eu^{2+}$  and  $Ho^{3+}$  fluorescence emission as a function of  $Ho^{3+}$ concentration. The  $Eu^{2+}$  emission is quenched by the addition of  $Ho^{3+}$  due to



FIG. 10. Relative intensities of the Eu<sup>2+</sup> (385 nm) and Ho<sup>3+</sup> (541 nm) emissions at room temperature in BaYF<sub>5</sub>: Eu<sup>2+</sup>(1.0 mole%),Ho<sup>3+</sup>(x mole%) as a function of x.

energy transfer. The Ho<sup>3+</sup> emission intensity increases up to a concentration of about 3 mole% due to increased energy transfer from the Eu<sup>2+</sup>. At higher concentration levels Ho<sup>3+</sup> concentration quenching occurs. The Eu<sup>2+</sup> fluorescence decay time is also quenched by the addition of Ho<sup>3+</sup>. The values of these lifetimes are listed in Table II.

The quenching of the  $Eu^{2+}$  fluorescence intensity and lifetime by the addition of Ho<sup>3+</sup> is due to the transfer of energy from the former to the latter type of ion. Using

Eu<sup>2+</sup>-Ho<sup>3+</sup> Decay Time and Energy Transfer Parameters (300 K) Sample (mole %)  $\tau(\mu s)$  $t_{\rm r}(\mu s)$ Eu Ho Eu Ho Ho  $R_0(\text{Å})$ η  $\omega(\mu s^{-1})$ 1.0 1.0 0.34 0.32 0.94 9.8 1.0 0.30 102 3.0 13.5 0.40 1.33 5.7 1.0 0.26 5.0 0.48 1.85 5.3 1.0 10.0 0.20 0.60 3.00 5.3

TABLE II



FIG. 11. Temperature dependences of the fluorescence lifetimes (circles) and rise times (squares) of Ho<sup>3+</sup> in BaYF<sub>5</sub>: Eu<sup>2+</sup>(1.0 mole%),Ho<sup>3+</sup>(3.0 mole%) after 337.1 pulsed excitation.

Eqs. (5) and (6) the transfer rate and efficiency can be determined and these are listed in Table II.

The decay profiles of the activator ions excited through energy transfer exhibit an



FIG. 12. Change in the  $Eu^{2+}$  decay patterns as a function of Ho<sup>3+</sup> concentration at room temperature in BaYF<sub>5</sub>:  $Eu^{2+}$ , Ho<sup>3+</sup> crystals containing 0.01 mole% Eu<sup>2+</sup> and Ho<sup>3+</sup> concentrations of (1) 0.0 mole%; (2) 1.0 mole%; (3) 3.0 mole%; (4) 5.0 mole%; and (5) 10.0 mole%. (See text for explanation of theoretical lines.)

initial rise followed by a single exponential decay. The temperature dependences of the fluorescence decay times and rise times of the Ho<sup>3</sup> are shown in Fig. 11 and the roomtemperature values are listed in Table II. The measured rise times are again an order of magnitude larger than those predicted theoretically using Eq. (4) and the measured energy transfer rate for  $W_2$ . As before, we attribute this to a bottleneck in the radiationless relaxation processes due to weak multiphonon emission processes in this type of host crystal. However, the shape of the temperature dependence of the fluorescence lifetime can not be fit by using Eqs. (1) and (2) and thus the various parameters describing the relaxation processes cannot be determined. The different shape for the curve of the fluorescence lifetime versus temperature may be associated with the interaction between Ho<sup>3+</sup> ions which occurs at the concentration present in this sample. This interaction may have an additional temperature dependence associated with it which contributes to the observed results.

The decay profiles of the sensitizer ions in the presence of activators are nonexponential due to energy transfer. These are shown in Fig. 12 for different activator concentrations. The curves are fit by the predictions of Eq. (7) assuming electric dipoledipole interaction. The values of the critical interaction distances found from this procedure are listed in Table II. The transfer efficiency, transfer rate, and critical interaction distance for Eu<sup>2+</sup>-Ho<sup>3+</sup> energy transfer are smaller than the parameters found for Eu<sup>2+</sup>-Er<sup>3+</sup> energy transfer. This is due to the difference in spectral overlap for the two systems.

#### Acknowledgments

This research was supported by the U.S. Army Research Office. One of the authors (L.X.) thanks Dr. E. Banks of the Polytechnic Institute of New York for providing experimental facilities for some of these measurements.

#### References

- H. J. GUGGENHEIM AND L. F. JOHNSON, Appl. Phys. Lett. 15, 51 (1969); L. F. JOHNSON AND H. J. GUGGENHEIM, Appl. Phys. Lett. 19, 44 (1971); 20, 474 (1972).
- L. F. JOHNSON, H. J. GUGGENHEIM, J. C. RICH, AND F. W. OSTERMAGER, J. Appl. Phys. 43, 1125 (1972).
- 3. C. FOUASSIER, B. LATOURRETTE, J. PORTIER, AND P. HAGENMULLER, *Mat. Res. Bull.* 11, 933 (1976).
- 4. B. LATOURRETTE, F. GUILLEN, AND C. FOUAS-SIER, Mat. Res. Bull. 14, 865 (1979).

- 5. F. GAUME, A. GROS, AND J. C. BOURCET, Rare Earths Mod. Sci. Technol. 3, 143 (1982).
- L. A. RISEBERG AND M. J. WEBER, "Progress in Optics," Vol. 14, (E. Wolf, Ed.), p. 89, North-Holland, Amsterdam, 1977.
- L. A. RISEBERG AND H. W. MOOS, *Phys. Rev.* 174, 429 (1968); E. D. REED, JR., AND H. W. MOOS, *Phys. Rev. B* 8, 980 (1973).
- 8. M. J. WEBER, Phys. Rev. 171, 283 (1968).
- F. K. FONG, S. L. NABERHUIS, AND M. M. MILLER, J. Chem. Phys. 56, 4020 (1972).
- 10. L. F. JOHNSON AND H. J. GUGGENHEIM, Appl. Phys. Lett. 23, 96 (1973).
- 11. TH. FORSTER, Ann. Phys. 2, 55 (1948).
- 12. D. L. DEXTER, Chem. Phys. 21, 836 (1953).
- M. INOKUTI AND F. HIRAYAMA, J. Chem. Phys. 43, 1978 (1965).
- 14. F. K. FONG AND D. J. DIESTLER, J. Chem. Phys. 56, 2875 (1972).